Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 165
Filter
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 18-24, 2023.
Article in Chinese | WPRIM | ID: wpr-953919

ABSTRACT

ObjectiveTo investigate the effect of Chaihu Guizhitang on triple-negative breast cancer (TNBC) cells based on hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor A (VEGFA) signaling pathway. MethodTNBC xenograft model was established and the cells were randomized into model group, capecitabine group (0.2 mg·kg-1), Chaihu Guizhitang low-dose group, medium-dose group, and high-dose group (10.62, 21.23, 42.46 g·kg-1), with 10 mice in each group. After 21 days of medication, the content of tumor necrosis factor-α (TNF-α) in serum was detected by enzyme-linked immunosorbent assay (ELISA). The expression of HIF-1α mRNA was detected by real-time fluorogenic quantitative polymerase chain reaction (real-time PCR). Immunohistochemistry (IHC) was employed to detect the expression of HIF-1α, TNF-α, and VEGFA in tumor tissues, and CD34 staining to examine the angiogenesis in tumor tissues. Microvessel density (MVD) was calculated, and the protein expression of HIF-1α, VEGFA, and epidermal growth factor receptor (EGFR) in tumor tissues was measured by Western blot. ResultCompared with the model group, the rest four groups showed low levels of TNF-α (P<0.01), HIF-1α mRNA (P<0.01), expression of HIF-1α, TNF-α, VEGFA, and CD34 in cells, and MVD (P<0.05, P<0.01), and low protein levels of HIF-1α, VEGFA, and EGFR (P<0.01). Compared with capecitabine group, medium-dose and high-dose Chaihu Guizhitang decreased the level of TNF-α (P<0.01), HIF-1α mRNA (P<0.01), expression of HIF-1α, TNF-α, and VEGFA in cells (P<0.01), CD34 expression, MVD, and protein levels of HIF-1α, VEGFA, and EGFR (P<0.01). ConclusionChaihu Guizhitang may inhibit the angiogenesis in TNBC cells by regulating the expression of HIF-1α/VEGFA signaling pathway, thus exerting anti-tumor effect.

2.
Journal of Peking University(Health Sciences) ; (6): 217-227, 2023.
Article in Chinese | WPRIM | ID: wpr-986842

ABSTRACT

OBJECTIVE@#To identify and characterize read-through RNAs and read-through circular RNAs (rt-circ-HS) derived from transcriptional read-through hypoxia inducible factor 1α (HIF1α) and small nuclear RNA activating complex polypeptide 1 (SNAPC1) the two adjacent genes located on chromosome 14q23, in renal carcinoma cells and renal carcinoma tissues, and to study the effects of rt-circ-HS on biological behavior of renal carcinoma cells and on regulation of HIF1α.@*METHODS@#Reverse transcription-polymerase chain reaction (RT-PCR) and Sanger sequencing were used to examine expression of read-through RNAs HIF1α-SNAPC1 and rt-circ-HS in different tumor cells. Tissue microarrays of 437 different types of renal cell carcinoma (RCC) were constructed, and chromogenic in situ hybridization (ISH) was used to investigate expression of rt-circ-HS in different RCC types. Small interference RNA (siRNA) and artificial overexpression plasmids were designed to examine the effects of rt-circ-HS on 786-O and A498 renal carcinoma cell proliferation, migration and invasiveness by cell counting kit 8 (CCK8), EdU incorporation and Transwell cell migration and invasion assays. RT-PCR and Western blot were used to exa-mine expression of HIF1α and SNAPC1 RNA and proteins after interference of rt-circ-HS with siRNA, respectively. The binding of rt-circ-HS with microRNA 539 (miR-539), and miR-539 with HIF1α 3' untranslated region (3' UTR), and the effects of these interactions were investigated by dual luciferase reporter gene assays.@*RESULTS@#We discovered a novel 1 144 nt rt-circ-HS, which was derived from read-through RNA HIF1α-SNAPC1 and consisted of HIF1α exon 2-6 and SNAPC1 exon 2-4. Expression of rt-circ-HS was significantly upregulated in 786-O renal carcinoma cells. ISH showed that the overall positive expression rate of rt-circ-HS in RCC tissue samples was 67.5% (295/437), and the expression was different in different types of RCCs. Mechanistically, rt-circ-HS promoted renal carcinoma cell proliferation, migration and invasiveness by functioning as a competitive endogenous inhibitor of miR-539, which we found to be a potent post-transcriptional suppressor of HIF1α, thus promoting expression of HIF1α.@*CONCLUSION@#The novel rt-circ-HS is highly expressed in different types of RCCs and acts as a competitive endogenous inhibitor of miR-539 to promote expression of its parental gene HIF1α and thus the proliferation, migration and invasion of renal cancer cells.


Subject(s)
Humans , Carcinoma, Renal Cell/pathology , Cell Proliferation , Hypoxia , Kidney Neoplasms , MicroRNAs/genetics , Neoplasm Invasiveness/genetics , RNA, Circular/metabolism , RNA, Small Interfering , Hypoxia-Inducible Factor 1, alpha Subunit/genetics
3.
International Eye Science ; (12): 537-545, 2023.
Article in Chinese | WPRIM | ID: wpr-965773

ABSTRACT

AIM:To investigate the mechanism of curcumin inhibiting the choroidal neovascularization(CNV)of brown Norway(BN)rats.METHODS: CNV model of 36 BN rats was established through laser photocoagulation induction, and they were divided into 6 groups with 6 rats in each group. Normal group was fed normally with no intervention, while 532nm laser photocoagulation was used to establish a experimental CNV model in BN rats. Rats after modeling were respectively intervened for 14d and divided into model group, ranibizumab group, curcumin low [100mg/(kg·d)], medium [200mg/(kg·d)], and high [400mg/(kg·d)] dose group. The model group was given intragastric administration of saline for 14d, ranibizumab(10mg/mL, 0.2mL/dose)was injected at 2d after photocoagulation with 5μL once for rats in ranibizumab group, and different concentrations of curcumin were intragastrically administrated to the rats in low, medium and high groups for 14d. Fundus photography, fundus fluorescein angiography(FFA)and indocyanine green angiography(ICGA)examination were performed at 14d after photocoagulation. Ocular histopathological specimens of rats with CNV were made, and the central thickness of CNV were observed by HE staining. Ocular histopathological specimens were made, and the expressions of AKT/p-AKT/HIF-1α/VEGF signaling pathway-related proteins were observed by immunohistochemistry. The mRNA relative expressions of AKT/HIF-1α/VEGF factor in CNV tissues were detected by RT-qPCR, and the protein expressions of AKT/p-AKT/HIF-1α/VEGF factor in CNV tissues were detected by Western-blot.RESULTS: CNV generation rates in the model group, the ranibizumab group, and the low, medium and high-dose curcumin groups were 78.18%, 73.21%, 77.19%, 75.86%, 74.55%, respectively, which were higher than 70%. The average absorbance were 182.12±6.59, 119.22±8.03, 166.45±8.33, 164.34±5.69, 149.22±6.45, respectively; the ranibizumab group was significantly lower than the model group(P&#x0026;#x003C;0.05); the low-dose, medium-dose and high-dose groups were significantly higher than the ranibizumab group(P&#x0026;#x003C;0.05), and the curcumin high-dose group was significantly lower than the model group(P&#x0026;#x003C;0.05). HE staining showed that the retinal tissue structure of BN rats in normal group was clear and neatly arranged. The central thickness of CNV in the ranibizumab group was significantly reduced at 14d after photocoagulation compared with the model group(P&#x0026;#x003C;0.05); While the curcumin high-dose group was significantly reduced compared with the model group(P&#x0026;#x003C;0.05), but increased when compared with ranibizumab group(P&#x0026;#x003C;0.05). Immunohistochemistry results showed that AKT, p-AKT, HIF-1α, and VEGF factors were negatively expressed in the retinal tissue structure of BN rats in the normal group, and no brown-yellow reactants were found. The expression of AKT, p-AKT, HIF-1α, and VEGF factors in the model group were higher than that in the normal group at 14d after photocoagulation(P&#x0026;#x003C;0.05); the ranibizumab group was lower than the model group(P&#x0026;#x003C;0.05). While the expression of the curcumin high-dose group was significantly decreased compared with the model group(P&#x0026;#x003C;0.05), but significantly increased when compared with ranibizumab group(P&#x0026;#x003C;0.05). The mRNA results showed that the relative expression levels of AKT, HIF-1α and VEGF mRNA in the model group at 14d after photocoagulation were higher than those of the normal group(P&#x0026;#x003C;0.05); the ranibizumab group was lower than the model group(P&#x0026;#x003C;0.05). While curcumin high-dose group was significantly decreased compared with the model group(P&#x0026;#x003C;0.05), but significantly increased when compared with ranibizumab group(P&#x0026;#x003C;0.05). Western-blot results showed that there was no significant difference in the relative expression of AKT protein among each experimental groups at 14d after photocoagulation. The relative expression of p-AKT protein in the model group was significantly higher than that in the normal group(P&#x0026;#x003C;0.05); the ranibizumab group was significantly lower than the model group(P&#x0026;#x003C;0.05); the curcumin high-dose group was significantly lower than the model group(P&#x0026;#x003C;0.05). The relative expression levels of HIF-1α protein were significantly higher in the model group than in the normal group(P&#x0026;#x003C;0.05), and the ranibizumab group was lower than in the model group(P&#x0026;#x003C;0.05). The relative expression levels of HIF-1α protein was lower in the curcumin high-dose group than in the model group(P&#x0026;#x003C;0.05)but higher than ranibizumab group(P&#x0026;#x003C;0.05). The relative expression level of VEGF protein was significantly lower in the curcumin medium/high-dose group than in the model group(P&#x0026;#x003C;0.05).CONCLUSION: Curcumin at 400mg/(kg·d)has an inhibitory effect on CNV in BN rats. The mechanism may be closely related to inhibiting the activation of AKT/p-AKT/HIF-1α/VEGF signaling pathways.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 142-149, 2023.
Article in Chinese | WPRIM | ID: wpr-964955

ABSTRACT

ObjectiveTo explore the protective effect of Xielitang on ulcerative colitis (UC) mice induced by dextran sodium sulfate (DSS) and its possible mechanism. MethodSixty C57BL/6 mice were randomly divided into normal group, model group, sulfasalazine group and and low-, medium-, and high-dose Xielitang groups. Free drinking DSS solution to build the chronic UC model mice. Except for normal group, other groups were given 1.5% DSS for 3 cycles of drinking (days 1-7, days 22-28 and days 43-49) and distilled water for the rest of the time (days 8-21, days 29-42 and days 50-63). After the first cycle, corresponding drugs were given for 42 days. The changes of general condition, body weight and disease activity index (DAI) score of mice were daily recorded during the experiment. At the end of the treatment, serum and colon tissue samples were collected, colon length was measured, intestinal weight index and colonic mucosal injury (CMDI) score were calculated. The pathological status of colon tissue was observed by hematoxylin-eosin (HE) staining. The levels of interleukin-6 (IL-6), interleukin-10 (IL-10) and tumour necrosis factor-α (TNF-α) were measured by enzyme-linked immunosorbent assay (ELISA). The gene and protein expressions of Toll like receptor 4 (TLR4), nuclear transcription factor-κB (NF-κB) and hypoxia inducible factor-1α (HIF-1α) in colon tissue was detected by Real-time quantitative polymerase chain reaction (Real-time PCR) and Western blot. ResultCompared with the normal group, the body weight, colon length and IL-10 content in the model group were significantly decreased (P<0.01), DAI score, intestinal weight index, CMDI score, IL-6 and TNF-α contents, and mRNA and protein expression levels of TLR4, NF-κB and HIF-1α in the model group were significantly increased (P<0.01). Moreover, the structure of colonic mucosa was destroyed and inflammatory cells infiltrated in the model group. Compared with model group, body weight, colon length and IL-10 content in each dose group of Xielitang were significantly increased (P<0.05, P<0.01), DAI score, intestinal weight index and CMDI score, IL-6 and TNF-α contents, mRNA and protein expression levels of TLR4, NF-κB and HIF-1α were notably decreased (P<0.05, P<0.01). The pathological injury of colon was obviously alleviated. ConclusionXielitang can significantly improve the inflammatory response of UC mice induced by DSS, and its mechanism may be related to the regulation of TLR4/NF-κB/HIF-1α signaling pathway.

5.
China Journal of Chinese Materia Medica ; (24): 2352-2359, 2023.
Article in Chinese | WPRIM | ID: wpr-981311

ABSTRACT

This study aims to explore the mechanism of Yanghe Decoction(YHD) against subcutaneous tumor in pulmonary metastasis from breast cancer, which is expected to lay a basis for the treatment of breast carcinoma with YHD. The chemical components of medicinals in YHD, and the targets of the components were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and SwissTargetPrediction. The disease-related targets were searched from GeneCards and Online Mendelian Inheritance in Man(OMIM). Excel was employed to screen the common targets and plot the Venn diagram. The protein-protein interaction network was constructed. R language was used for Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment. A total of 53 female SPF Bablc/6 mice were randomized into normal group(same volume of normal saline, ig), model group(same volume of normal saline, ig), and low-dose and high-dose YHD groups(YHD, ig, 30 days), with 8 mice in normal group and 15 mice in each of the other groups. Body weight and tumor size was measured every day. Curves for body weight variation and growth of tumor in situ were plotted. In the end, the subcutaneous tumor sample was collected and observed based on hematoxylin and eosin(HE) staining. The mRNA and protein levels of hypoxia inducible factor-1α(HIF-1α), pyruvate kinase M2(PKM2), lactate dehydrogenase A(LDHA), and glucose transporter type 1(GLUT1) were detected by PCR and Western blot. A total of 213 active components of YHD and 185 targets against the disease were screened out. The hypothesis that YHD may regulate glycolysis through HIF-1α signaling pathway to intervene in breast cancer was proposed. Animal experiment confirmed that the mRNA and protein levels of HIF-1α, PKM2, LDHA, and GLUT1 in the high-and low-dose YHD groups were lower than those in the model group. YHD has certain inhibitory effect on subcutaneous tumor in pulmonary metastasis from breast cancer in the early stage, which may intervene pulmonary metastasis from breast cancer by regulating glycolysis through HIF-1α signaling pathway.


Subject(s)
Female , Mice , Animals , Glucose Transporter Type 1/genetics , Network Pharmacology , Animal Experimentation , Saline Solution , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Signal Transduction , Glycolysis , RNA, Messenger , Neoplasms/drug therapy , Molecular Docking Simulation
6.
Protein & Cell ; (12): 398-415, 2023.
Article in English | WPRIM | ID: wpr-982558

ABSTRACT

Hair loss affects millions of people at some time in their life, and safe and efficient treatments for hair loss are a significant unmet medical need. We report that topical delivery of quercetin (Que) stimulates resting hair follicles to grow with rapid follicular keratinocyte proliferation and replenishes perifollicular microvasculature in mice. We construct dynamic single-cell transcriptome landscape over the course of hair regrowth and find that Que treatment stimulates the differentiation trajectory in the hair follicles and induces an angiogenic signature in dermal endothelial cells by activating HIF-1α in endothelial cells. Skin administration of a HIF-1α agonist partially recapitulates the pro-angiogenesis and hair-growing effects of Que. Together, these findings provide a molecular understanding for the efficacy of Que in hair regrowth, which underscores the translational potential of targeting the hair follicle niche as a strategy for regenerative medicine, and suggest a route of pharmacological intervention that may promote hair regrowth.


Subject(s)
Mice , Animals , Quercetin/pharmacology , Endothelial Cells , Hair , Hair Follicle , Alopecia
7.
Journal of Zhejiang University. Science. B ; (12): 50-63, 2023.
Article in English | WPRIM | ID: wpr-971468

ABSTRACT

Accumulating evidence has confirmed the links between transfer RNA (tRNA) modifications and tumor progression. The present study is the first to explore the role of tRNA methyltransferase 5 (TRMT5), which catalyzes the m1G37 modification of mitochondrial tRNAs in hepatocellular carcinoma (HCC) progression. Here, based on bioinformatics and clinical analyses, we identified that TRMT5 expression was upregulated in HCC, which correlated with poor prognosis. Silencing TRMT5 attenuated HCC proliferation and metastasis both in vivo and in vitro, which may be partially explained by declined extracellular acidification rate (ECAR) and oxygen consumption rate (OCR). Mechanistically, we discovered that knockdown of TRMT5 inactivated the hypoxia-inducible factor-1 (HIF-1) signaling pathway by preventing HIF-1α stability through the enhancement of cellular oxygen content. Moreover, our data indicated that inhibition of TRMT5 sensitized HCC to doxorubicin by adjusting HIF-‍1α. In conclusion, our study revealed that targeting TRMT5 could inhibit HCC progression and increase the susceptibility of tumor cells to chemotherapy drugs. Thus, TRMT5 might be a carcinogenesis candidate gene that could serve as a potential target for HCC therapy.


Subject(s)
Humans , Carcinoma, Hepatocellular/pathology , Cell Hypoxia , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Liver Neoplasms/pathology , Signal Transduction/genetics , tRNA Methyltransferases/metabolism
8.
Journal of Zhejiang University. Science. B ; (12): 32-49, 2023.
Article in English | WPRIM | ID: wpr-971467

ABSTRACT

Hypoxia, as an important hallmark of the tumor microenvironment, is a major cause of oxidative stress and plays a central role in various malignant tumors, including glioblastoma. Elevated reactive oxygen species (ROS) in a hypoxic microenvironment promote glioblastoma progression; however, the underlying mechanism has not been clarified. Herein, we found that hypoxia promoted ROS production, and the proliferation, migration, and invasion of glioblastoma cells, while this promotion was restrained by ROS scavengers N-acetyl-L-cysteine (NAC) and diphenyleneiodonium chloride (DPI). Hypoxia-induced ROS activated hypoxia-inducible factor-1α (HIF-1α) signaling, which enhanced cell migration and invasion by epithelial-mesenchymal transition (EMT). Furthermore, the induction of serine protease inhibitor family E member 1 (SERPINE1) was ROS-dependent under hypoxia, and HIF-1α mediated SERPINE1 increase induced by ROS via binding to the SERPINE1 promoter region, thereby facilitating glioblastoma migration and invasion. Taken together, our data revealed that hypoxia-induced ROS reinforce the hypoxic adaptation of glioblastoma by driving the HIF-1α-SERPINE1 signaling pathway, and that targeting ROS may be a promising therapeutic strategy for glioblastoma.


Subject(s)
Humans , Cell Hypoxia , Cell Line, Tumor , Glioblastoma/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Plasminogen Activator Inhibitor 1/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Tumor Microenvironment , Brain Neoplasms/pathology
9.
Asian Journal of Andrology ; (6): 152-157, 2023.
Article in English | WPRIM | ID: wpr-971026

ABSTRACT

Chromodomain-helicase-DNA-binding protein 1 (CHD1) deletion is among the most common mutations in prostate cancer (PCa), but its role remains unclear. In this study, RNA sequencing was conducted in PCa cells after clustered regularly interspaced palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-based CHD1 knockout. Gene set enrichment analysis (GSEA) indicated upregulation of hypoxia-related pathways. A subsequent study confirmed that CHD1 deletion significantly upregulated hypoxia-inducible factor 1α (HIF1α) expression. Mechanistic investigation revealed that CHD1 deletion upregulated HIF1α by transcriptionally downregulating prolyl hydroxylase domain protein 2 (PHD2), a prolyl hydroxylase catalyzing the hydroxylation of HIF1α and thus promoting its degradation by the E3 ligase von Hippel-Lindau tumor suppressor (VHL). Functional analysis showed that CHD1 deletion promoted angiogenesis and glycolysis, possibly through HIF1α target genes. Taken together, these findings indicate that CHD1 deletion enhances HIF1α expression through PHD2 downregulation and therefore promotes angiogenesis and metabolic reprogramming in PCa.


Subject(s)
Male , Humans , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , DNA-Binding Proteins/metabolism , Prolyl Hydroxylases/metabolism , Hypoxia , Prostatic Neoplasms/pathology , Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Cell Line, Tumor , DNA Helicases/metabolism
10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 9-17, 2023.
Article in Chinese | WPRIM | ID: wpr-979446

ABSTRACT

ObjectiveTo investigate the mechanism of Xumingtang in Gu Jin Lu Yan (《古今录验》) in regulating cell pyroptosis through the hypoxia-inducible factor-1α (HIF-1α)/NOD-like receptor pyrin domain-containing protein 3 (NLRP3) pathway in ischemic stroke (IS). MethodSD rats were randomly divided into a sham operation group, a model group, low- and high-dose Xumingtang groups, and a metformin group, with 20 rats in each group. Oral administration was performed for 3 days, and tissue samples were collected. Differential messenger RNA (mRNA) was screened using high-throughput sequencing, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed on key differentially expressed genes. The modified neurological severity score (mNSS) and 2,3,5-triphenyltetrazolium chloride (TTC) staining were used to evaluate the effect of brain infarction. Hematoxylin-eosin (HE) staining was used for pathological morphological observation of brain tissue. Enzyme-linked immunosorbent assay (ELISA) was used to compare the levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18) in the ischemic cortical region. Double staining immunohistochemistry was used to detect the co-localization of HIF-1α and NLRP3. Real-time quantitative polymerase chain reaction (PCR) was performed to detect the mRNA expression of NLRP3, HIF-1α, Caspase-1 (CASP-1), and gasdermin D (GSDMD). Western blot was used to detect the protein expression of HIF-1α, NLRP3, CASP-1, and GSDMD. ResultA total of 5 705 differentially expressed genes (2 733 downregulated and 2 972 upregulated) were obtained by mRNA sequencing. After conversion to homologous genes and intersection with the pyroptosis gene set, 95 key differentially expressed pyroptosis genes were obtained. Compared with the sham operation group, the model group showed significantly increased mNSS scores, larger brain infarction areas (P<0.01), diverse neuronal morphology, disordered arrangement, widened cell gaps, significantly increased levels of IL-1β and IL-18 in the ischemic cortical region (P<0.01), enhanced co-localization fluorescence intensity, and significantly increased mRNA and protein expression levels of HIF-1α, NLRP3, CASP-1, and GSDMD (P<0.01). Compared with the model group, the high-dose Xumingtang group showed the most significant improvement in neurological function scores and brain infarction areas (P<0.01). The neuronal integrity and arrangement were more complete, and the cell gaps were narrower in all groups with drug treatment, with significantly reduced co-localization fluorescence intensity. Xumingtang could reduce the levels of IL-1β, IL-18, and the mRNA and protein expression of HIF-1α, NLRP3, CASP-1, and GSDMD (P<0.05, P<0.01), with the high-dose Xumingtang group showing the most significant effect (P<0.01). ConclusionXumingtang in Gu Jin Lu Yan can inhibit cell pyroptosis and promote neurological function recovery after IS, which may be related to the inhibition of the HIF-1α/NLRP3 pathway.

11.
Acta Pharmaceutica Sinica ; (12): 1401-1411, 2023.
Article in Chinese | WPRIM | ID: wpr-978737

ABSTRACT

Coronary heart disease (CHD) and stroke are the most well-known cardiovascular diseases, which share many common pathological basis. Yindan Xinnaotong soft capsule (YDXNT) is a commonly used Chinese patent medicine in the treatment of stroke and CHD. However, its action of mechanism of co-treatment for stroke and CHD is still unclear. The aim of this study was to explore the common mechanism of YDXNT in co-treatment of CHD and stroke using network pharmacology, experimental verification and molecular docking. An integrated literature mining and databases of IPA, ETCM, HERB, Swiss Target Prediction, OMIM and GeneCards were used to screen and predict active ingredients and potential targets of YDXNT in co-treatment of CHD and stroke. The protein-protein interaction network, GO analysis and pathway analysis were analyzed by IPA software. The effect of YDXNT on core targets was verified by immunofluorescence. UPLC-QTOF/MS and molecular docking were used to screen and predict the main active constituents of YDXNT and their interactions with core targets. A total of 151 potential targets are predicted for YDXNT in co-treatment of CHD and stroke. Hypoxia-inducible factor-1α (HIF1α)-matrix metalloproteinase-9 (MMP9)-mediated HIF1α signaling pathway serves as one of the common mechanisms. YDXNT could reduce the increase of mitochondrial fluorescence intensity and the protein expression of HIF1α and MMP9 in HL-1 and HA induced by oxygen and glucose deprivation/reperfusion (OGD/R) in a dose-dependent manner. Baicalin may be the material basis for treating stroke and CHD with YDXNT. In conclusion, the HIF1α signaling pathway is one of the common key mechanisms of YDXNT in the co-treatment of stroke and CHD. The study provides support and basis for the in-depth scientific connotation of the traditional Chinese medicine theory of "same treatment to different diseases".

12.
International Eye Science ; (12): 1264-1268, 2023.
Article in Chinese | WPRIM | ID: wpr-978616

ABSTRACT

AIM: To examine the effects of salidroside on choroidal thickness, hypoxia-inducible factor-1α(HIF-1α), dopamine(DA)and its D1 receptor expression in guinea pigs with lens-induced myopia(LIM).METHODS: A total of 18 two-week-old guinea pigs were randomly divided into the normal control(NC)group, the LIM group, and the LIM + salidroside(LIM+SA)group, with 6 guinea pigs in each group. The guinea pigs in the NC group were fed normally and intragastrically administered with 2 mL/d saline; those in the LIM group wore a -5D lens in front of their right eyes to establish a myopia model, then they were intragastrically administered with 2 mL/d saline. Finally, those in the LIM+SA group wore glasses along with intragastric administration of 2 mL/d salidroside at a dose of 100 mg/kg. The refraction, axial length, and choroidal thickness of guinea pigs in each group were measured 4wk following the establishment of the model. In addition, the relative mRNA expression and protein content of HIF-1α in the choroid and retina of guinea pigs in each group were detected by real-time quantitative PCR(qPCR)and immunohistochemistry(IHC). Finally, the DA concentration and its D1 receptor expression were detected by enzyme-linked immunosorbent assay(ELISA)and Western blot.RESULTS: At 4wk after model establishment, guinea pigs of LIM group and LIM+SA group exhibited increased negative refraction of the right eye, prolonged axial length, and decreased choroidal thickness compared to the NC group. The relative mRNA expression and protein content of HIF-1α in the choroid and retina of the guinea pigs increased. The concentration of DA and the expression of its D1 receptor both decreased. Moreover, compared to the LIM group, the diopter of the right eye of guinea pigs in LIM+SA group significantly reduced, the axial length was shorter, the thickness of choroid increased, the relative mRNA expression and protein content of HIF-1α in the choroid and retina decreased and the concentration of DA and the expression of its D1 receptor both increased.CONCLUSION: Salidroside can delay myopia progression in myopic guinea pigs by affecting choroidal thickness and the expression of HIF-1α, DA and its D1 receptor.

13.
International Eye Science ; (12): 1087-1092, 2023.
Article in Chinese | WPRIM | ID: wpr-976475

ABSTRACT

AIM:To clarify the effect of miR-519d-3p on high glucose-induced human retinal microvascular endothelial cells(HRMEC)dysfunction and angiogenesis, and to elucidate the regulatory mechanism of miR-519d-3p on hypoxia inducible factor 1 subunit alpha(HIF-1α).METHODS: The normal glucose(NG)and high glucose(HG)cell models were established by inducing HRMEC with 5 and 30 mmol/L glucose, respectively. Control group: HG cell model was transfected with negative control mimics; mannitol group: the control group was added with 25 mmol/L mannitol; miR-519d-3p overexpression group: HG cell model was transfected with miR-519d-3p mimics; miR-519d-3p combined with HIF-1α overexpression group: HG cell model was co-transfected with miR-519d-3p mimics and HIF-1α overexpression vector. The expression of miR-519d-3p in each group was tested by real-time fluorescence quantitative PCR. The expression of HIF-1α protein in each group was tested by Western blotting. The binding sites between miR-519d-3p and HIF-1α were detected by luciferase reporter gene assay. The cell proliferation of each group was detected by CCK-8. The cell apoptosis of each group was tested by Hoechst 33342 staining. The protein expression of extracellular fluid inflammatory factors tumor necrosis factor-α(TNF-α), interleukin(IL)-1β and IL-6 in each group was tested by ELISA. The formation of new capillary lumen-like structures was detected by tubule formation assay.RESULTS: Compared with the NG, miR-519d-3p expression was significantly reduced in the HG cell model, while HIF-1α protein expression was significantly increased in the HG(all P&#x003C;0.01). Compared with the control group, HIF-1α protein expression was significantly reduced in the miR-519d-3p overexpression group(P&#x003C;0.01). The “CGUGAAA” sequence of miR-519d-3p could specifically bind to the “GCACUUU” sequence of HIF-1α 3'-untranslated region(3'-UTR). Compared with the control group, the miR-519d-3p overexpression group showed a significant increase in 24, 48 and 72h absorbance values, a significant decrease in cell apoptotic rate, a significant decrease in the concentrations of TNF-α, IL-1β and IL-6, and a significant decrease in the number of new capillary lumen-like structures(all P&#x003C;0.01). Compared with the miR-519d-3p overexpression group, the miR-519d-3p combined with HIF-1α overexpression group showed a significant decrease in 24, 48 and 72h absorbance values, a significant increase in cell apoptotic rate, a significant increase in the concentrations of TNF-α, IL-1β and IL-6, and a significant increase in the number of new capillary lumen-like structures(all P&#x003C;0.01). There was no difference between the control group and mannitol group in the comparison of the above indicators(all P&#x003E;0.05).CONCLUSION: miR-519d-3p expression is down-regulated while HIF-1α protein expression is up-regulated in high glucose induced HRMEC model. HIF-1α is a target gene of miR-519d-3p. The miR-519d-3p targets HIF-1α to increase cell proliferation and reduce cell apoptosis and inflammation, thereby alleviating high glucose-induced HRMEC dysfunction and inhibiting angiogenesis.

14.
Acta Pharmaceutica Sinica ; (12): 3311-3320, 2023.
Article in Chinese | WPRIM | ID: wpr-999069

ABSTRACT

The Tongmai Yangxin pill (TMYX) has potential clinical effects on no-reflow (NR); however, the effective substances and mechanisms by which this occurs remain unclear. This study evaluates the cardioprotective effects and molecular mechanisms of TMYX against NR. We used a myocardial NR rat model (2 h after myocardial ischemia and 2 h after reperfusion) to confirm the effect and mechanism of action of TMYX in alleviating NR. In vitro studies in isolated coronary microvasculature of NR rats and in silico network pharmacology analyses were performed to reveal the underlying mechanisms of TMYX and determine the main components, targets, and pathways of TMYX, respectively. The experiment was approved by the Ethics Committee of Hunan University of Chinese Medicine (LLBH-202212160001). TMYX showed therapeutic effects on NR by improving cardiac structure and function, reducing NR, ischemic areas, and cardiomyocyte injury, and decreasing the content of cardiac troponin I (cTnI). Moreover, the mechanism of TMYX predicted by network pharmacology is related to the hypoxia inducible factor-1 (HIF-1), nuclear factor kappa-B (NF-κB), and tumor necrosis factor (TNF) signaling pathways. TMYX increased the expression of G protein-coupled estrogen receptor (GPER), phospho-extracellular signal-regulated kinase (p-ERK), and HIF-1α. In vitro, TMYX enhanced the diastolic function of coronary microvascular cells; however, this effect was inhibited by GPER inhibitor (G-15), eNOS inhibitor (L-NAME), and sGC inhibitor (ODQ). This study integrates pharmacology and experimental evaluation to reveal that TMYX activates HIF-1α/eNOS signaling pathway by upregulating GPER to relax coronary microvessels, thereby significantly alleviating NR.

15.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 134-141, 2023.
Article in Chinese | WPRIM | ID: wpr-969608

ABSTRACT

ObjectiveTo observe the effect of Huangqi Baihe granules on the hypoxia-inducible factor 1α (HIF-1α)/nuclear factor-κB (NF-κB)/NOD-like receptor hot protein domain related protein 3 (NLRP3) signaling pathway in a rat model of high altitude hypoxia. MethodSixty male SPF SD rats were randomly divided into blank group, model group, dexamethasone group (5 mg·kg-1), and high, middle, and low-dose groups of Huangqi Baihe granules (4.1, 2.05, 1.025 g·kg-1). Among them, each Chinese medicine group was administrated orally for continuously 14 d, once a day, and the dexamethasone group was injected intraperitoneally for continuously 3 d as the positive control group. On the 15th d, the model group, dexamethasone group, and high, middle, and low dose groups of Huangqi Baihe granules were exposed to the simulated high altitude, low pressure, and low oxygen environment in the animal low-pressure simulation cabin, and the exposure lasted for 3 d. Blood was collected from the abdominal aorta and serum was separated, and the brain tissue was taken after being killed. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in brain tissue. Enzyme-linked immunosorbent assay (ELISA) was used to detect the content of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in rat serum. Western blot was used to detect HIF-1α, NLRP3, phosphorylated nuclear factor-κB (p-NF-κB), NF-κB, desquamation D (GSDMD), and cysteine aspartate-specitis protein-1(Caspase-1) in rats of each group. The mRNA expression levels of HIF-1α, NLRP3, NF-κB p65, GSDMD, and Caspase-1 were detected by real-time quantitative polymerase chain reaction (Real-time PCR). ResultThe results of HE staining showed that as compared with the normal group, the pathological sections of brain tissues in the model group showed that pyramidal cells were loosely arranged and distributed in disorder, with different sizes. Compared with the model group, the pathological changes in pyramidal cells in the dexamethasone group and high and middle-dose groups of Huangqi Baihe granules were reduced. The results of ELISA showed that as compared with the normal group, the content of TNF-α, IL-6, and IL-1β in the serum of rats in the model group was significantly higher (P<0.01). Compared with the model group, the content of TNF-α, IL-6, and IL-1β in the serum of rats in the dexamethasone group and high and middle-dose groups of Huangqi Baihe granules decreased significantly (P<0.05, P<0.01). The results of Western blot showed that as compared with the normal group, the relative protein expression levels of HIF-1α, NLRP3, p-NF-κB p65, GSDMD, and Caspase-1 in the brain tissue of the model group were significantly higher (P<0.01). As compared with the model group, the relative expressions of HIF-1α, NLRP3, p-NF-κB p65, GSDMD, and Caspase-1 in the brain tissue of rats in the dexamethasone group and the high-dose group of Huangqi Baihe granules were significantly decreased (P<0.05, P<0.01). The relative protein expression levels of HIF-1α, NLRP3, p-NF-κB p65, and Caspase-1 in the brain tissue of rats in the middle-dose group of Huangqi Baihe granules decreased significantly (P<0.01), and the relative protein expression of HIF-1α in the brain tissue of rats in the low-dose group of Huangqi Baihe granules was reduced (P<0.05). The Real-time PCR analysis showed that as compared with the normal group, the mRNA expression levels of HIF-1α, NLRP3, NF-κB p65, GSDMD, and Caspase-1 in the brain tissue of the model group were significantly increased (P<0.01). As compared with the model group, the mRNA expression levels of HIF-1α, NLRP3, NF-κB p65, GSDMD, and Caspase-1 in the brain tissue of rats in the dexamethasone group were significantly decreased (P<0.01). The mRNA expression levels of HIF-1α, NF-κB p65, GSDMD, and Caspase-1 in the brain tissue of rats in the high-dose group of Huangqi Baihe granules decreased significantly (P<0.01). The mRNA expression levels of HIF-1α, NLRP3, and Caspase-1in the brain tissue of rats in the middle-dose group of Huangqi granules decreased (P<0.05, P<0.01). ConclusionThe protective effect of Huangqi Baihe granules on acute brain injury in low-pressure hypoxic rats may be related to the HIF-1α/NF-κB/NLRP3 signaling pathway.

16.
Journal of Zhejiang University. Science. B ; (12): 221-231, 2023.
Article in English | WPRIM | ID: wpr-971482

ABSTRACT

Metabolic reprogramming is a common phenomenon in cancer, with aerobic glycolysis being one of its important characteristics. Hypoxia-inducible factor-1α (HIF1Α) is thought to play an important role in aerobic glycolysis. Meanwhile, naringin is a natural flavanone glycoside derived from grapefruits and many other citrus fruits. In this work, we identified glycolytic genes related to HIF1Α by analyzing the colon cancer database. The analysis of extracellular acidification rate and cell function verified the regulatory effects of HIF1Α overexpression on glycolysis, and the proliferation and migration of colon cancer cells. Moreover, naringin was used as an inhibitor of colon cancer cells to illustrate its effect on HIF1Α function. The results showed that the HIF1Α and enolase 2 (ENO2) levels in colon cancer tissues were highly correlated, and their high expression indicated a poor prognosis for colon cancer patients. Mechanistically, HIF1Α directly binds to the DNA promoter region and upregulates the transcription of ENO2; ectopic expression of ENO2 increased aerobic glycolysis in colon cancer cells. Most importantly, we found that the appropriate concentration of naringin inhibited the transcriptional activity of HIF1Α, which in turn decreased aerobic glycolysis in colon cancer cells. Generally, naringin reduces glycolysis in colon cancer cells by reducing the transcriptional activity of HIF1Α and the proliferation and invasion of colon cancer cells. This study helps to elucidate the relationship between colon cancer progression and glucose metabolism, and demonstrates the efficacy of naringin in the treatment of colon cancer.


Subject(s)
Humans , Glycolysis , Colonic Neoplasms/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Phosphopyruvate Hydratase/metabolism , Flavanones/pharmacology , Cell Line, Tumor , Databases, Genetic , Cell Proliferation/drug effects , Transfection , Warburg Effect, Oncologic
17.
Journal of Southern Medical University ; (12): 929-936, 2022.
Article in Chinese | WPRIM | ID: wpr-941023

ABSTRACT

OBJECTIVE@#To investigate effects of physiological hypoxic conditions on suspension and adherence of embryoid bodies (EBs) during differentiation of human induced pluripotent stem cells (hiPSCs) and explore the underlying mechanisms.@*METHODS@#EBs in suspension culture were divided into normoxic (21% O2) and hypoxic (5% O2) groups, and those in adherent culture were divided into normoxic, hypoxic and hypoxia + HIF-1α inhibitor (echinomycin) groups. After characterization of the pluripotency with immunofluorescence assay, the hiPSCs were digested and suspended under normoxic and hypoxic conditions for 5 days, and the formation and morphological changes of the EBs were observed microscopically; the expressions of the markers genes of the 3 germ layers in the EBs were detected. The EBs were then inoculated into petri dishes for further culture in normoxic and hypoxic conditions for another 2 days, after which the adhesion and peripheral expansion rate of the adherent EBs were observed; the changes in the expressions of HIF-1α, β-catenin and VEGFA were detected in response to hypoxic culture and echinomycin treatment.@*RESULTS@#The EBs cultured in normoxic and hypoxic conditions were all capable of differentiation into the 3 germ layers. The EBs cultured in hypoxic conditions showed reduced apoptotic debris around them with earlier appearance of cystic EBs and more uniform sizes as compared with those in normoxic culture. Hypoxic culture induced more adherent EBs than normoxic culture (P < 0.05) with also a greater outgrowth rate of the adherent EBs (P < 0.05). The EBs in hypoxic culture showed significantly up-regulated mRNA expressions of β-catenin and VEGFA (P < 0.05) and protein expressions of HIF-1 α, β-catenin and VEGFA (P < 0.05), and their protein expresisons levels were significantly lowered after treatment with echinomycin (P < 0.05).@*CONCLUSION@#Hypoxia can promote the formation and maturation of suspended EBs and enhance their adherence and post-adherent proliferation without affecting their pluripotency for differentiation into all the 3 germ layers. Our results provide preliminary evidence that activation of HIF-1α/β-catenin/VEGFA signaling pathway can enhance the differentiation potential of hiPSCs.


Subject(s)
Humans , Echinomycin/metabolism , Embryoid Bodies/metabolism , Hypoxia/metabolism , Induced Pluripotent Stem Cells/metabolism , beta Catenin/metabolism
18.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 164-172, 2022.
Article in Chinese | WPRIM | ID: wpr-940741

ABSTRACT

ObjectiveTo predict the underlying mechanism of Bushen Huoxuetang in treating osteoporosis related to endocrine therapy in breast cancer by network pharmacology and to verify the results through in vitro cell model. MethodThe main effective components and targets of Bushen Huoxuetang were screened out through network pharmacology, and the targets of osteoporosis related to endocrine therapy in breast cancer were further obtained. The intersected targets were analyzed by Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Kaplan Meier plotter was used to analyze the survival of crucial targets. Finally, the inhibitory activity against cell proliferation was evaluated by in vitro methye thiazolye telrazlium(MTT) assay. The key targets and pathways were verified by Western blot, and the mRNA expression of the key targets was evaluated by real-time polymerase chain reaction(Real-time PCR). ResultA total of 716 active components and 249 key targets of Bushen Huoxuetang were obtained from network pharmacology. There were 135 common targets, among which protein kinase B(Akt)1 and hypoxia-inducible factor-1α (HIF-1α) were two key targets. Additionally, 531 biological processes, 62 cellular components, 162 molecular functions, and 145 signaling pathways including breast cancer and endocrine resistance were involved. The key targets were effectively enriched in phosphatidylinositol 3-kinases(PI3K)/Akt and HIF-1 signaling pathways. According to the MTT assay, the cell proliferation rate and cell motility of MCF-7 and T47D cells in the luminal A cell line were reduced by Bushen Huoxuetang treatment (22.5, 45, 90 g·L-1, and 45, 90, 180 g·L-1) for 48 h as compared with the blank group. As revealed by Western blot, MCF-7 cells were treated with Bushen Huoxuetang (0, 15, 60 g·L-1) for 48 h, and the relative expression of p-PI3K, PI3K, p-Akt, Akt, and HIF-1α was decreased in a dose-dependent manner as compared with the blank group (P<0.05, P<0.01). Real-time PCR was used to detect the mRNA expression of the key target HIF-1α. The results showed that the mRNA expression of HIF-1α in MCF-7 cells was decreased with the increase in the dose (P<0.01), and the change was in a concentration-dependent manner. ConclusionThe mechanism of Bushen Huoxuetang in the treatment of osteoporosis related to endocrine therapy in breast cancer may be related to the key targets including Akt1 and HIF-1α through the PI3K/Akt/HIF-1α signaling pathway.

19.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 9-16, 2022.
Article in Chinese | WPRIM | ID: wpr-940170

ABSTRACT

ObjectiveTo investigate the effect and mechanism of Biejiajian Wan on liver fibrosis by regulating the polarization of macrophages. MethodRaw264.7 cells were cultured in vitro by serum pharmacological method, and the hypoxia model of RAW264.7 cells was established by stimulating RAW264.7 cells with cobalt chloride (CoCl2). The cells were randomly divided into blank group, CoCl2 hypoxia model group (200 mmol·L-1), Biejiajian Wan low-dose group (200 mmol·L-1+0.55 g·kg-1 Fuzheng Quyu capsules), medium-dose group (200 mmol·L-1+1.1 g·kg-1 Biejiajian Wan), and high-dose group (200 mmol·L-1+2.2 g·kg-1 Biejiajian Wan) and Fuzheng Quyu capsule group (200 mmol·L-1+0.56 g·kg-1 Biejiajian Wan). Cell proliferation was detected by cell counting kit-8 (CCK-8), and the gene expression of hypoxia inducible factor-1α (HIF-1α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in macrophages was detected by real time fluorescence quantitative polymerase chain reaction (Real-time PCR). The expression of macrophage polarization-related protein and HIF-1α/nuclear factor-kappa B (NF-κB) signaling pathway-related protein was tested by Western blot, and the distribution and expression of NF-κB signaling pathway-related protein and HIF-1α were determined by cell immunofluorescence. ResultCompared with the conditions in the blank group, the proliferation of RAW264.7 cells was inhibited after CoCl2 stimulation for 24 hours (P<0.05), the mRNA expression of HIF-1α, IL-1β and IL-6 in the model group were increased (P<0.05), the protein expression of HIF-1α and M1 macrophage phenotypic proteins IL-6 and tumor necrosis factor-α (TNF-α) was boosted while that of M2 macrophage phenotypic protein interleukin-10 (IL-10) was reduced (P<0.05), the protein expression of NF-κB p65, phosphorylation (p)-NF-κB p65, phosphorylated NF-κB inhibits protein kinase α/β (p-IKKα/β) and phosphorylated NF-κB inhibits protein α (p-IκBα) was elevated (P<0.05), the nuclear expression of HIF-1α and NF-κB p65 was promoted. Compared with the conditions in the model group, after 24 hours of treatment with corresponding drug-containing serum, each treatment group promoted the proliferation of RAW264.7 cells (P<0.05), the mRNA expression levels of HIF-1α, IL-1β and IL-6 in macrophages were reduced (P<0.05), the protein expression of HIF-1α, IL-6 and TNF-α was decreased, while that of CD163 and IL-10 was increased (P<0.05), the protein expression of NF-κB p65, p-NF-κB p65, p-IKKα/β and p-IκBα was lowered (P<0.05), the nuclear expression of HIF-1α and NF-κB p65 was inhibited. ConclusionBiejiajian Wan could modulate the polarization of macrophages, attenuate the injury of macrophage-associated inflammatory response under hypoxia, and thus delay the progression of liver fibrosis, which might be related to its regulation of HIF-1α/NF-κB signaling pathway.

20.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 9-16, 2022.
Article in Chinese | WPRIM | ID: wpr-940138

ABSTRACT

ObjectiveTo investigate the effect and mechanism of Biejiajian Wan on liver fibrosis by regulating the polarization of macrophages. MethodRaw264.7 cells were cultured in vitro by serum pharmacological method, and the hypoxia model of RAW264.7 cells was established by stimulating RAW264.7 cells with cobalt chloride (CoCl2). The cells were randomly divided into blank group, CoCl2 hypoxia model group (200 mmol·L-1), Biejiajian Wan low-dose group (200 mmol·L-1+0.55 g·kg-1 Fuzheng Quyu capsules), medium-dose group (200 mmol·L-1+1.1 g·kg-1 Biejiajian Wan), and high-dose group (200 mmol·L-1+2.2 g·kg-1 Biejiajian Wan) and Fuzheng Quyu capsule group (200 mmol·L-1+0.56 g·kg-1 Biejiajian Wan). Cell proliferation was detected by cell counting kit-8 (CCK-8), and the gene expression of hypoxia inducible factor-1α (HIF-1α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in macrophages was detected by real time fluorescence quantitative polymerase chain reaction (Real-time PCR). The expression of macrophage polarization-related protein and HIF-1α/nuclear factor-kappa B (NF-κB) signaling pathway-related protein was tested by Western blot, and the distribution and expression of NF-κB signaling pathway-related protein and HIF-1α were determined by cell immunofluorescence. ResultCompared with the conditions in the blank group, the proliferation of RAW264.7 cells was inhibited after CoCl2 stimulation for 24 hours (P<0.05), the mRNA expression of HIF-1α, IL-1β and IL-6 in the model group were increased (P<0.05), the protein expression of HIF-1α and M1 macrophage phenotypic proteins IL-6 and tumor necrosis factor-α (TNF-α) was boosted while that of M2 macrophage phenotypic protein interleukin-10 (IL-10) was reduced (P<0.05), the protein expression of NF-κB p65, phosphorylation (p)-NF-κB p65, phosphorylated NF-κB inhibits protein kinase α/β (p-IKKα/β) and phosphorylated NF-κB inhibits protein α (p-IκBα) was elevated (P<0.05), the nuclear expression of HIF-1α and NF-κB p65 was promoted. Compared with the conditions in the model group, after 24 hours of treatment with corresponding drug-containing serum, each treatment group promoted the proliferation of RAW264.7 cells (P<0.05), the mRNA expression levels of HIF-1α, IL-1β and IL-6 in macrophages were reduced (P<0.05), the protein expression of HIF-1α, IL-6 and TNF-α was decreased, while that of CD163 and IL-10 was increased (P<0.05), the protein expression of NF-κB p65, p-NF-κB p65, p-IKKα/β and p-IκBα was lowered (P<0.05), the nuclear expression of HIF-1α and NF-κB p65 was inhibited. ConclusionBiejiajian Wan could modulate the polarization of macrophages, attenuate the injury of macrophage-associated inflammatory response under hypoxia, and thus delay the progression of liver fibrosis, which might be related to its regulation of HIF-1α/NF-κB signaling pathway.

SELECTION OF CITATIONS
SEARCH DETAIL